Installazione e collaudo di una macchina per Detonation Spray

Alessandro Gessi

Report RdS/2013/040
INSTALLAZIONE E COLLAUDO DI UNA MACCHINA PER DETONATION SPRAY

Alessandro Gessi (ENEA)

Settembre 2013

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dello Sviluppo Economico - ENEA
Piano Annuale di Realizzazione 2012
Area: Produzione di energia elettrica e protezione dell'ambiente
Progetto: Sviluppo competenze scientifiche nel campo della sicurezza nucleare e collaborazione ai programmi internazionali per il nucleare di IV Generazione
Obiettivo: Sviluppo competenze scientifiche nel campo della sicurezza nucleare
Responsabile del Progetto: Mariano Tarantino, ENEA
Installazione e collaudo
di una macchina per Detonation Spray

Descrittori

Tipologia del documento: Rapporto Tecnico
Collocazione contrattuale: Accordo di programma ENEA-MSE su sicurezza nucleare e reattori di IV generazione
Argomenti trattati: Tecnologie dei materiali
 Generation IV reactors

Sommario

I processi di deposizione basati sul metodo Detonation Spray sono di grande interesse per la comunità scientifica LFR, in quanto consentono la deposizione di strati sottili, fino a 20μm su substrati austenici e ferritici. Il presente documento sintetizza le attività in corso e completate sul DS presso ENEA Brasimone.

Note
Testo in Inglese.
Autori:
A. Gessi (ENEA)

Copia n. In carico a:

<table>
<thead>
<tr>
<th>Copia n.</th>
<th>In carico a:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Nome</td>
</tr>
<tr>
<td></td>
<td>FIRMA</td>
</tr>
<tr>
<td>1</td>
<td>Nome</td>
</tr>
<tr>
<td></td>
<td>FIRMA</td>
</tr>
<tr>
<td>0</td>
<td>EMISSIONE</td>
</tr>
<tr>
<td></td>
<td>Nome</td>
</tr>
<tr>
<td></td>
<td>A. Gessi</td>
</tr>
<tr>
<td></td>
<td>FIRMA</td>
</tr>
</tbody>
</table>
Sommario
PREFACE: THE ISSUE OF CORROSION IN LFR .. 3
COATINGS: AN OVERVIEW .. 3
DETONATION GUN SPRAYING .. 5
THE ENEA DETONATION SPRAY EQUIPMENT: THE ACTIVITIES CARRIED ON
IN 2013 .. 7
STATUS: INSTALLATION CERTIFICATIONS AND TEST 9
OUTLOOK ... 17
REFERENCES ... 17
PREFACE: THE ISSUE OF CORROSION IN LFR

Lead cooled Fast Reactors represent one of the most promising technologies in the frame of Gen IV fission fast reactors development. The materials’ issue is one of the central topics. In fact, all the high temperatures components (i.e. 550°C) shall be exposed to a flux of liquid Pb with a speed of 1-2m/s, thus leading to high corrosion phenomena. An example of such components is the fuel claddings. A consequence of this environment is that materials should stand a sum of different effects: neutrons and possible swelling, leading to creep and mechanical stresses, corrosion, erosion, chemical interaction with the fuel and the fission products.

There are several different approaches with the goal to face the above depicted problems. One of the most promising is the performance of protective coating layers on top of the exposed components.

In between the many industrial options for coatings manufacturing, ENEA Brasimone chose the “Detonation Spray” method, because of two main important reasons:

- The possibility to spray directly oxides on the substrates with very high densities and compactness
- The simplicity of an industrial system.

This ongoing activity is the very first for ENEA Brasimone, covering the topic of new materials manufacturing, thus representing a very interesting opportunity.

COATINGS: AN OVERVIEW

Coating was proposed in the past and, in some cases, also tested in nuclear reactors, in order to improve the corrosion resistance or tribological properties of materials used in reactor core and in other vessel internals. Co-based Stellite 6, as wear resistant coating, in French Na-cooled reactors is one example of coatings used in core vicinity. However, up to now the purpose was mainly to mitigate some specific technological issues, rather than to increase safety margins.

Shadowed by the recent Fukushima’s accident, the global nuclear industry has to work hard in order to improve the safety and reliability standards of nuclear systems. In this context, for the
next generation nuclear facilities (ADS, research reactors, GENIV-type demo reactors), the researchers are focusing more and more on high-performance coatings and surface engineering.

The last decade development of both coating deposition technologies and of scientific knowledge, concerning chemical composition and substrate adherence, is a strong support for researchers and designers working to enhance safety and reliability of the next generation nuclear facilities.

From previous research activities, the surface modification of fuel cladding materials have been identified as one option to increase the temperature on one side and to increase safety margins (e.g. corrosion resistance) on the other side of future nuclear systems, especially for those cooled with Pb alloys. Reservoir layers containing Al have shown the capability to improve corrosion resistance in Pb alloys significantly. However, so far optimization of coating composition was limited to Al content. Positive effects of adding minor amounts of reactive elements, that have shown their potential in high temperature applications, are not considered and investigated up to know.

In the case of Na-cooled systems at which corrosion is not an issue of concern so far – going to 60 years might change this view. Likewise the replacement of Co-based alloy coatings used for hardfacing some internal components and fretting phenomenon in HEX tubes are the areas where application of coatings are and should be discussed.

A further open topic in general is the use of different coating architectures that have shown in non nuclear application their potential to improve material properties. DS coating is ENEA choice.
DETONATION GUN SPRAYING

D-gun spray process is a thermal spray coating process, which gives an extremely good adhesive strength, low porosity and coating surface with compressive residual stresses. A precisely measured quantity of the combustion mixture consisting of oxygen and acetylene is fed through a tubular barrel closed at one end. In order to prevent the possible back firing a blanket of nitrogen gas is allowed to cover the gas inlets. Simultaneously, a predetermined quantity of the coating powder is fed into the combustion chamber. The gas mixture inside the chamber is ignited by a simple spark plug. The combustion of the gas mixture generates high pressure shock waves (detonation wave), which then propagate through the gas stream. Depending upon the ratio of the combustion gases, the temperature of the hot gas stream can go up to 4000 deg C and the velocity of the shock wave can reach 3500m/sec. The hot gases generated in the detonation chamber travel down the barrel at a high velocity and in the process heat the particles to a plasticizing stage (only skin melting of particle) and also accelerate the particles to a velocity of 1200m/sec. These particles then come out of the barrel and impact the component held by the manipulator to form a coating. The high kinetic energy of the hot powder particles on impact with the substrate result in a build up of a very dense and strong coating. The coating thickness developed on the work piece per shot depends on the ratio of combustion gases, powder particle size, carrier gas flow rate, frequency and distance between the barrel end and the substrate. Depending on the required coating thickness and the type of coating material the detonation spraying cycle can be repeated at the rate of 1-10 shots per second. The chamber is finally flushed with nitrogen again to remove all the remaining “hot” powder particles from the chamber as these can otherwise detonate the explosive mixture in an irregular fashion and render the whole process uncontrollable. With this, one detonation cycle is completed above procedure is repeated at a particular frequency until the required thickness of coating is deposited.
Fig.1. Detonation Gun process

The chamber is finally flushed with nitrogen again to remove all the remaining “hot” powder particles from the chamber as these can otherwise detonate the explosive mixture in an irregular fashion and render the whole process uncontrollable. With this, one detonation cycle is completed above procedure is repeated at a particular frequency until the required thickness of coating is deposited.
THE ENEA DETONATION SPRAY EQUIPMENT: THE ACTIVITIES CARRIED ON IN 2013

As a first step, at ENEA Brasimone for coating manufacturing, CCDS200 DS coating machine from STPC company, Novosibirsk, Russia, has been purchased and is being installed. It has to be underlined that STPC is the only vendor worldwide of this machine, originally trademark of Praxair ® USA. Together with an installation at Grenoble University, it will be the only european facility DS based.

The chosen experimental hall for DS hosting is located in the so called “ex-lidar” area, where suitable buildings, in terms both of facilities and requested audio insulation, are present.

On the other hand, being this area not used since several years, a huge work of restoration and adaptation has been carried on during year 2013. It is summarized as follows:

- Evictions and demolition of the existing interior flooring linoleum particularly deteriorated
- Remake of a reinforced concrete slab with welded type 815 thick. 15 cm
- Creation of a base in reinforced concrete with steel nets to act fixing with anchor bolts of the machine
- Soundproofing-through suitable panels on the walls and the door to the noise abatement when operating the machine (about 140 db)
- Painting with two-component epoxy resin of screeds previously made
- Supply and installation of the floor of the bathroom floor made of single-fired (tiles?)
- Change of the windows with new shatterproof (one?)
- Supply and installation of a window to check the working area equipped with shatterproof glass
- Creation of an outdoor shed for housing the cylinder bundles
- Masonry for the realization of various holes and passages
- Water connections
- Works adjusting the electrical facilities
- Accomplishments-lines for technical gases and compressed air
The actual shape of the experimental hall and service areas is depicted in fig. 2

![Sketch of the new DS experimental area.](image)

Fig. 2: sketch of the new DS experimental area.

The main goals of this installations follow the requirements of the instrumentation, as depicted in the previous report.
STATUS: INSTALLATION CERTIFICATIONS AND TEST

CLIENTE: ENEA – STAB. BRASIMONE

DATA: 16/09/13

DESCRIZIONE IMPIANTO: IMPIANTO DISTRIBUZIONE GAS TECNICI PER "DETONATION SPRAY"

PROGETTO N°: 600132653

CONTROLLI E PROVE EFFETTuate

<table>
<thead>
<tr>
<th>CONTROLLO VISIVO</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST ALLA MASSIMA PRESSIONE DI ESERCIZIO (METODO EMISSIONE DI BOLLE)</td>
<td>OK</td>
</tr>
<tr>
<td>TEST STABILITÀ DI REGOLAZIONE PRESSIONI</td>
<td>OK</td>
</tr>
<tr>
<td>CONTROLLO EROGAZIONE</td>
<td>OK</td>
</tr>
</tbody>
</table>

NOTE:
SI E' PROVVEDUTO AD ESEGUIRE LA FORMAZIONE ALL’UTILIZZO DELL’IMPIANTO ED UN TEST DI APPRENDIMENTO PRATICO AL SIG. GRANIERI

PER IL CLIENTE

DOCUMENTO AD USO INTERNO DI PROPRIETÀ AIR LIQUIDE ITALIA SERVICE S.R.L.
RAPPORTO DI INTERVENTO TECNICO

Ragione Sociale: AIR LIQUIDE ITALIA SERVICE srl
Numero di telefono: 41100 MODENA
Indirizzo: Via N. Biondo, 485/A

RAPPORTE N. DATA TECNICO SIG.

<table>
<thead>
<tr>
<th>RAPPORTE N.</th>
<th>DATA</th>
<th>TECNICO SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESERCITO PRESSO: ENEA CHIESANO, via B.196/17A

PERSONA CHIAMATA: S. C. GRANITI

MODALITÀ DI INTERVENTO:
- **TIPO DI IMPIANTO O APPARECCHIO:** (Ordinario, Straordinario)
- **SOSTITUZIONE A N:**
- **DATA SPEDIZIONE LAVORI:**

MATERIALI UTILIZZATI - DESCRIZIONE:

- **ENTRATA**
 - ORE: 10:00
- **USCITA**
 - ORE: 13:00
- **VIAGGIO**
 - ORE: 0:40
- **PERCORSO**
 - M: 0
- **CHIUDERE**

GAS TECNICI, PURI, PURISSIMI, MEDICALI

IMPIANTI, APPARECCHI E CONTENITORI PER CRIOGENIA E CRIOBIOLOGIA

IMPIANTI PER TRASPORTO REFRIGERATI

TUNNELS DI SURGELAZIONE

IMPIANTI CENTRALI DI DISTRIBUZIONE GAS

APPARECCHI MEDICALI

IMPIANTI, APPARECCHI AUTOMATICI E SEMI AUTOMATICI, MATERIALI, PRODOTTI E ACCESSORI PER OGNI SISTEMA DI SALDATURA E TAGLIO

PROCEDIMENTI TIG, MIG, ARGOSOMMIER, TAGLIO E SALDATURA PLASMA

IMPIANTI PER IL FRAZIONAMENTO DEI GAS DELL’ARIA

TANKS MOBILI E FISSI PER LO STOCCAGGIO DI GAS CRIOGENICI LIQUEFATTI

1 - Copia per il CLIENTE
DICHIARAZIONE CE DI CONFORMITÀ

Il sottoscritto, rappresentante della ditta EMIL-TECNO Soc., Via Emilia Ovest, 930-41123 MODENA

Denominato: Quadro elettrico per comando valvole gas tecnici.

Matricola: 00913

Anno di costruzione: 2013

E' costruito per essere incorporato in una macchina ed è conforme con quanto previsto dalle seguenti direttive comunitarie:

- 73/23/CEE - 93/68/CEE
- 89/336/CEE - 92/31/CEE

e che sono state applicate tutte le norme socioindicate.

Direttiva bassa tensione

Direttiva compatibilità elettromagnetica

CEI EN 60439-1 (CEI 17.131)
CEI EN 60894-1 (CEI 44.5)
<table>
<thead>
<tr>
<th>Marca e Tipo</th>
<th>Sigla e Tipo</th>
<th>Descrizione</th>
<th>Posizione</th>
<th>Fine</th>
<th>Inizio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB</td>
<td>AV</td>
<td>Interruttore</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>SV</td>
<td>Interruttore</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>SCHNEIDER</td>
<td>SC</td>
<td>Interruttore</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>GAD</td>
<td>GAD</td>
<td>Interruttore</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>EATON</td>
<td>EATON</td>
<td>Interruttore</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>GENERAL</td>
<td>ELECTRIC</td>
<td>Interruttore</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: La tabella mostra le posizioni di varie componenti elettriche nel sistema di distribuzione. Le descrizioni mostrano il tipo di componente e la marca.
OUTLOOK

The experimental hall has been completed, the DS machine will be installed during the month of October.

The system for DS will be constituted by an automated system:

- The coating gun itself, consisting of the torch and the propeller-target tanks
- A robotic arm for the coating performance
- A static substrate tripod, with the possibility to implement a second robotic arm
- A standard acoustic insulated chamber for the coating performance, with dedicated control room
- An external safety gas supply system, [refs 1, 2, 3, 4].

Consisting of a “thelial spray” system, the DS is able to coat the external part of tubings or other simple geometry components, thus being suitable for fuel claddings mock ups.

After a short training by STPC personnel, the very first experimental campaign will, as a first step, target the following coating possibilities:

- Alumina (Al₂O₃) coatings
- Ta coatings

Alumina, as well as Tantalum, are two of the most effective protective coatings against Pb, and with the DS the alumina compound can be sprayed directly as oxide.

The qualification of the DS coating method and surface engineering needs for the nuclear systems, by means of Pb corrosion tests and mechanical tests, with the goal of improving their safety and reliability, constitutes the starting point for the next PAR experiments.

REFERENCES.
[1]. Air Liquide scheda di dati di sicurezza AL.5.21
[2]. Air Liquide scheda di dati di sicurezza AL.001
[3]. Air Liquide scheda di dati di sicurezza AL.089A
[4]. Air Liquide scheda di dati di sicurezza AL.097A