FAST 3D OPTICAL-PROFILOMETER FOR THE SHAPE-ACCURACY CONTROL OF PARABOLIC-TROUGH FACETS

Marco Montecchi1, Arcangelo Benedetti2, Giuseppe Cara2

1 Researcher physicist at ENEA CR Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria (Roma), Italy.
2 E-mail: marco.montecchi@enea.it

2 Electronic technician at ENEA CR Casaccia

VISprofile features:

Scope: shape-accuracy verification of parabolic-trough facets in laboratory or industry; that gives the concentration effectiveness of the specimen.

Measures: x,y,z, $\partial z/\partial x$ and $\partial z/\partial y$

VISprofile is a profilometer !!!

Evaluates by ray tracing: intercept-factor, d_{max} of reflected radiation from the focus line, flux and incident angle distribution on receiver surface.

Experimental setup:

![Experimental setup](image)

View from the camera, the linear array of point light source appears imaged on the reflective panel.

Nonlinear array of point light sources

VISprofile features:

Strengths:

- **PROFILOMETER:** not only partial derivatives ($\partial z/\partial x$ and $\partial z/\partial y$) but also z is measured. \textit{The same can not claimed by V-SHOT and FRT}
- **SIMPPLICITY:** just 3 components (linear array of point light sources, motorized linear guide rail, FireWire camera)
- **LOW-COST**
- **FAST MEASURING & DATA PROCESSING:** 3 ms/point
- **HIGH ACCURACY:** better than 20 μrad and 50 μm for arctangent of derivatives and z deviation \rightarrow superior than FRT instruments

Working:

Given S and C, P and the therein normal must fulfill

$$-\overrightarrow{SP} + \overrightarrow{PC} \propto \overrightarrow{n}$$

The normal is related to the partial derivatives

$$\overrightarrow{n} \propto \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1 \right)$$

The scan consists of grabbing a number of frames varying the camera abscissa, so that during the scan the observed point-source-images span the whole facet-surface, from one linear edge to the opposite one.

Let P_0 be a point of the facet-surface of which z is known. Among its neighbor points, let us consider P_i here x_i,y_i are evaluated by the image itself, but z_i is not known.

On the other hand, for an ideal parabolic profile, the planes tangent in P_0 and P_i are expected to intersect each other at midway. With this criterion position and derivative in P_i are uniquely evaluated.

It is reasonable to extend this criterion also along y, so that z and the partial derivatives can be uniquely evaluated in the neighbor points of P_0.

The iterative application of this procedure allows to determine the shape of the whole facet-surface.